TEORI BAHASA DAN AUTOMATA
Teori Bahasa
Teori bahasa membicarakan bahasa formal (formal language), terutama untuk
kepentingan perancangan kompilator (compiler) dan pemroses naskah (text
processor). Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah
bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama. Sebuah bahasa
formal bisa dibangkitkan oleh dua atau lebih tata bahasa berbeda. Dikatakan bahasa
formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya.
Bahasa manusia bersifat sebaliknya; grammar diciptakan untuk meresmikan kata-kata
yang hidup di masyarakat. Dalam pembicaraan selanjutnya ‘bahasa formal’ akan
disebut ‘bahasa’ saja.
Automata
Automata adalah mesin abstrak yang dapat mengenali (recognize), menerima
(accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.
Beberapa Pengertian Dasar
• Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam
geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
• String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika a, b,
dan c adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari
ketiga simbol tersebut.
• Jika w adalah sebuah string maka panjang string dinyatakan sebagai w dan
didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut.
Sebagai contoh, jika w = abcb maka w= 4.
• String hampa adalah sebuah string dengan nol buah simbol. String hampa
dinyatakan dengan simbol ε (atau ^) sehingga ε= 0. String hampa dapat
dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
• Alfabet adalah hinpunan hingga (finite set) simbol-simbol.
Teori bahasa membicarakan bahasa formal (formal language), terutama untuk
kepentingan perancangan kompilator (compiler) dan pemroses naskah (text
processor). Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah
bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama. Sebuah bahasa
formal bisa dibangkitkan oleh dua atau lebih tata bahasa berbeda. Dikatakan bahasa
formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya.
Bahasa manusia bersifat sebaliknya; grammar diciptakan untuk meresmikan kata-kata
yang hidup di masyarakat. Dalam pembicaraan selanjutnya ‘bahasa formal’ akan
disebut ‘bahasa’ saja.
Automata
Automata adalah mesin abstrak yang dapat mengenali (recognize), menerima
(accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.
Beberapa Pengertian Dasar
• Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam
geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
• String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika a, b,
dan c adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari
ketiga simbol tersebut.
• Jika w adalah sebuah string maka panjang string dinyatakan sebagai w dan
didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut.
Sebagai contoh, jika w = abcb maka w= 4.
• String hampa adalah sebuah string dengan nol buah simbol. String hampa
dinyatakan dengan simbol ε (atau ^) sehingga ε= 0. String hampa dapat
dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
• Alfabet adalah hinpunan hingga (finite set) simbol-simbol.
Finite State Automata (FSA)
♦ model matematika yang dapat menerima input dan mengeluarkan output
♦ Memiliki state yang berhingga banyaknya dan dapat berpindah dari satu state ke
state lainnya berdasar input dan fungsi transisi
♦ Tidak memiliki tempat penyimpanan/memory, hanya bisa mengingat state terkini.
♦ Mekanisme kerja dapat diaplikasikan pada : elevator, text editor, analisa leksikal,
pencek parity.